二元一次方程的解法公式法,解二元一次方程组的步骤格式?
二元一次方程组的解法分为代入法和加减法两种方法二元一次方程的解法公式法。
一.把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
用代入法解二元一次方程组的步骤:
1.从方程组中选择一个系数比较简单的方程,将这个方程中的一个未知数用另一个未知数表示出来;
2.将变形后的关系式代入另一个方程中,消去一个未知数,得到一个一元一次方程;
3.解这个方程,求出这个未知数的值;
4.将求得的未知数的值代入关系式,求得另一个未知数的值,并把求得的未知数的值用半个大括号联立起来。
二.当二元一次方程组中的两个方程中同一个未知数的系数相同或相反时,把这两个方程两边分别相减或相加,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减法解二元一次方程组的一般步骤:
1.方程组的两个方程中,如果同一个未知数的系数既不相等也不互为相反数,就用适当的数乘方程的两边,使同一个未知数的系数相等或互为相反数
2.把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程。
3.解这个一元一次方程,求得一个未知数的值。
4.将这个求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值,并把求得的未知数的值用半个大括号联立起来。
三.方程组中有些代数式重复出现时,可以选择整体代入,这样更简单!
配方法:
1.将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.将二次项系数化为1 3.将常数项移到等号右侧 4.等号左右两边同时加上一次项系数一半的平方 5.将等号左边的代数式写成完全平方形式 6.左右同时开平方 7.整理即可得到原方程的根 例:解方程2x^2+4=6x 1.2x^2-6x+4=0 2.x^2-3x+2=0 3.x^2-3x=-2 4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等) 5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0) 6.x-1.5=±0.5 7.x1=2 x2=1
二元一次方程组(一)
一、重点、难点
1、二元一次方程及其解集
(1)含有两个未知数,并且未知数项的次数是1的整式方程叫二元一次方程.
(2)二元一次方程的解是无数多组.
2、二元一次方程组和它的解
(1)含有两个相同未知量的两个二元一次方程合在一起,就组成了一个二元一次方程组.
(2)使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值叫做二元一次方程组的解.
3、二元一次方程组的解法
(1)代入消元法:把其中的一个方程的某一个未知数用含有另一个未知数的代数式表示,然后代入另一个方程,就可以消去一个未知数.
(2)加减消元法:先利用等式的性质,用适当的数同乘以需要变形的方程的两边,使两个方程中某个未知数的系数的绝对值相等,然后把两个方程的两边分别相加或相减,就可以消去这个未知数.
4、三元一次方程组及其解法
(1)含有三个未知数,每个方程的未知数的次数都是1,并且是由三个方程组成的方程组叫做三元一次方程组.
(2)解三元一次方程组的基本思想是用消元的方法把“三元”转化为“二元”(将未知问题转化为已知问题,再将“二元”转化为“一元”).
二、例题分析:
例1: 在方程2x-3y=6中,1)用含x的代数式表示y.2)用含y的代数式表示x.
答案:1)y= x-2; 2)x=3+ y
例2:已知x+y=0,且|x|=2,求y+2的值.
解:∵|x|=2
∴x=2,或x=-2
又∵x+y=0
∴y=-2,或y=2
故y+2=0,或y+2=4
例3:已知方程组 的解是 ,求a与b的值
分析:方程组的解就是适合原方程组,所以将 代入方程可以得到关于a,b的新的方程。
解:因为方程组
的解是
所以
(1)×2得2a-4=2b (3)
(3)-(2)得-5=2b-2
∴b=-
将b=- 代入(1)得a=
∴
答案:a= , b=-
例4:方程x+3y=10在正整数范围内的解有_____组,它们是________________。
答案:3;
例5:把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.
答案:3x-5y+17=0
例6:已知关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2。
当 k=_____时,方程为一元一次方程,
当 k=_____时,方程为二元一次方程。
分析:题目中没有规定未知数,所以x,y都可以。因此注意分两种可能。
解:第一问∵关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2为一元一次方程,
∴ (1)或 (2)
方程组(1)的解为k=-1,(2)无解
∴当k=-1时原方程为一元一次方程
第二问∵关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2为二元一次方程
∴
解得k=1
∴当k=1时原方程为二元一次方程
例7:二元一次方程组 的解中x与y互为相反数,求a的值
解:∵原方程组的解中x与y互为相反数
∴x=-y (1)
将(1)代入原方程组,得
∴a=
二元一次方程组(二)
一、对应用题的观察和分析
利用二元一次方程组解有关的应用题时,对应用题进行观察和分析,要着重注意如下三点:
(1)题中有哪几个未知数(包括明显的未知数和隐含的未知数)?
(2)题中的未知数与已知内容之间有哪几个相等关系(包括明显的相等关系和隐含的相等关系)?——题中有几个未知数,一般就要找出几个相等关系.
(3)设立哪几个未知数,利用哪几个相等关系,可以较方便地把其余未知数用所设未知数的代数式表示出来?(利用剩下的等量关系列方程组.)
二、常见几类应用题及其基本数量关系
明确各类应用题中的基本数量关系,是正确列出方程的关键.常遇到的几类应用题及其基本关系如下:
1.行程问题:基本关系式为: 速度×时间=距离
2.工程问题:基本关系式为:
工作效率×工作时间=工作总量
计划数量×超额百分数=超额数量
计划数量×实际完成百分数=实际数量
3.百分比浓度问题:基本关系式为: 溶液×百分比浓度=溶质
4.混合物问题:基本关系式为:
各种混合物重量之和=混合后的总重量
混合前纯物重量=混合后纯物重量
混合物重量×含纯物的百分数=纯物的重量
5.航行问题:基本关系式为:
静水速度+水速=顺水速度
静水速度-水速=逆水速度
6.数字问题要注意各数位上的数字与数位的关系.
7.倍比问题,要注意一些基本关系术语,如:倍、分、大、小等.

支付宝怎么取消自动续费
1、登录自己的支付宝,点击右上角的设置按钮,然后点击支付设置。
2、然后点击免密支付、自动扣款。
2022-12-11 20:27
精选综合
60万阅读

nh42so4是什么化学名称
nh42so4是硫酸铵的化学名称。硫酸铵是一种无机物,为无色结晶或白色颗粒,无气味。不溶于醇、丙酮和氨水。有吸湿性,吸湿后固结成块。加热到513度以上完全分解成氨气、氮气...
2022-12-11 20:25
精选综合
51万阅读

rar怎么打开
1、双击需要打开的rar格式文件,这时候就弹出一个操作框,选择菜单栏里的解压到,会弹出一个打开rar文件的存放地方设置。
2022-12-08 23:56
精选综合
66万阅读

怎么哄女孩子不生气
1、首先你要了解你的女孩子,分辨出她是真生气还是假生气,如果不了解,那么态度决定一切。用你真诚的态度,去求原谅,一敷衍只会吵得更凶。
2022-12-08 23:56
精选综合
49万阅读
